skip to main content


Search for: All records

Creators/Authors contains: "Gayah, Vikash V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regional perimeter control based on the existence of macroscopic fundamental diagrams has been widely studied as an effective tool to regulate traffic and prevent oversaturation in dense urban areas. Significant research efforts have been performed concerning the modeling aspects of perimeter control. More recently, data-driven techniques for perimeter control have shown remarkable promise; however, few studies have examined the transferability of these techniques. While it is surely of the highest priority to devise effective perimeter control methods, the ability of such methods to transfer the learned knowledge and quickly adapt control policies to a new setting is critical, particularly in real-life situations where training a method from scratch is intractable. This work seeks to bridge this research gap by comprehensively examining the effectiveness and transferability of a reinforcement-learning-based perimeter control method for a two-region urban network in a microsimulation setting. The results suggest: 1) the presented data-driven method demonstrates promising control effectiveness in comparison with no perimeter control and an extended greedy controller and 2) the method can readily transfer its learned knowledge and adapt its control policy with newly collected data to simulation settings with different traffic demands, driving behaviors, or both.

     
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Free, publicly-accessible full text available February 1, 2025
  4. Free, publicly-accessible full text available January 15, 2025
  5. Free, publicly-accessible full text available January 8, 2025
  6. Free, publicly-accessible full text available January 1, 2025
  7. Free, publicly-accessible full text available December 31, 2024
  8. Free, publicly-accessible full text available January 1, 2025